
General page information

e asyReportPDF
Last modified : 06/09/2005  ( Version 1.00 )

Information

easyReportPDFis a library for developers to create Reports in PDF from any data source. It's based on the award winning
aspEasyPDF library for rendering fast PDF documents trough the WEB and being optimized to use it on any application
development that needs to use real-time Data Reporting by connecting to a database server.  

But what really differs from aspEasyPDF library? We have simplified aspEasyPDF, added database connection, fast
scripting interpretation and finally report rendering features; The result is that you design the report with VisualEasyPDF,
which is a product designed for data reporting ( included on the license ) , saves the report and run it from your application
without coding a line for the report. No other library makes it easier, take a look on the tutorials to learn more.

Key features

PDF Reports
Native PDF rendering by including the aspEasyPDF library inside the easyReportPDF which results a fast real-time
PDF Data Reporting library.

Design reports
easyReportPDF includes a license of VisualEasyPDF to develop the reports. You don't need to code your application
to render the report, just set the report file and render it directly to the printer.

Parameters
Create user parameters and automatically ask the user to input the value. The report will react with the user input
data and will show the correct information that has requested for.

Grouping
Create up to 10 grouping level bands.

Scripting
You need that the report reacts to certain values when rendering it, then just code with our fast scripting technology
and debug it with VisualEasyPDF before posting the report to avoid any error.

Fast Maintenance
Found an error on your report and need to solve it fast; the reports may be altered directly trough the server and the
changes will be effective immediately for your users after pressing save button in VisualEasyPDF.

Databases
It includes msSQL (© Microsoft Corporation) , MySQL (© MySQL AB. ) , Oracle ( © Oracle Corporation. ) , PostgreSQL ( © Portions.
The PostgreSQL Global Development Group  ) , SyBase ( ©  Sybase Inc. ) , FireBird ( © Firebird Project. ) , Access (© Microsoft
Corporation) and ADO native drivers to retrieve the data faster than any simple ODBC connection. Other databases
may be accessed by using ADO native drive connection.

Versions

The library is Shareware which has one limitation; it displays a message on each page of the PDF document, the 
Crippleware technique is used to guaranty piracy protection. The price? Starts at just US$ 159 per machine!

The Professional version adds functions that helps you to alter object properties and connections settings in real-time; see
help file to see which are those functions that are only available with the Professional version.

- easyReportPDF - 

1 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



The SITE licensing option helps you achieve significant savings on volume purchase of MITData products. SITE license
entitles you to install and use the software on unlimited number of workstations. 

If you need all the aspEasyPDF functionality in the easyReportPDF then get the aspEasyPDF Enterprise version which adds
all the features of easyReportPDF inside the aspEasyPDF.

- easyReportPDF - 

2 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



 Different versions of easyReportPDF

The different versions are all coded on the same DLL ( reportpdf.dll ) and the license file that you purchase sets the library to
use one version or other. This way you may upgrade your license with just using a different license file.

Standard version is the basic version which loads the report and renders it. You can not use compression, encryption or
other internal functions which interact with the report on your code. All those functions are marked with an asterisk in the help
file.

Professional version does what the standard version do but adds compression properties, encryption and internal function
that interacts with the objects from the report. Those functions are marked with an asterisk in the help file.

Feature Standard Professional

aspEasyPDF library coded Yes Yes

Support for Bitmaps, GIF, TIFF, PNG, JP2000 and JPEG Yes Yes

Chart capability Yes Yes

Use code bars ( EAN, Code39, Code128, etc ) Yes Yes

Supported Databases ( ADO, msSQL, mySQL, FireFox, ODBC, Access and more ) Yes Yes

Render reports directly to the printer or to the browser Yes Yes

Free license of VisualEasyPDF Yes Yes

Load VEP files done with the VisualEasyPDF design tool Yes Yes

Loads reports created by VisualEasyPDF Yes Yes

Adds all technology features from easyReportPDF into aspEasyPDF Yes Yes

Create dynamically reports Yes Yes

Add dynamic script to your report Yes Yes

Manage user parameters directly Yes Yes

Compressionand security encryption in 40 bits or 128 bits No Yes

Functions that interacts with VisualEasyPDF objects;

setDBConnection ; Changes connection properties, this is useful to 
setDBSQL ; Changes the SQL dynamically before running the report.
getFirstObject , getNextObject; retrieve objects from the report
getPropObj , getProperty ; gets property objects
setPropObj , setPoperty ; sets property objects

No Yes

- easyReportPDF - 

3 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Release History

1.01 (X-September-2005)
Added the Clear function
Added NVersion function
Added Connection constants ( see Constants help )

1.00 (1-September-2005)
Public release

- easyReportPDF - 

4 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



[[TOPIC HERE]]

- easyReportPDF - 

5 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



BinaryWrite
Function explain

Name BinaryWrite 

Parameters  (none)

Result  (none)

From version  1.00

Warning: For using a similar function in .NET you should use the SaveVariant function and not the BinaryWrite

This is the same function as the Save method, but instead to save it to disk it will save it on memory and forwards it
directly to the Internet Browser which will open the PDF reader ( if it's registered in the machine). 
Use this function for internet developments because you don't have to establish security permissions and you don't
have to maintain PDF files in the hard disk. 

Syntax
ERP .BinaryWrite 

See also
 Save  SaveVariant  Show  Print

- easyReportPDF - 

6 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



GetFirstObj
Function explain

Name GetFirstObj 

Parameters  Object Type as Integer

Result  Result as WideString

From version  1.00

" Professional feature " 

Will return the first object found in the report memory. This may be used to retrieve the name of an object you don't
known the exact name and then after knowing it's name change it's value. To get the next object use the 
GetNextObject function.

This tables show you the different object you may request:

Object Types

ID Description
1 Text
2 Shape
3 Graphic
4 MultiText
5 EditBox
6 Button
7 RadioButton
8 CheckBox
9 ListBox
10 ComboBox
11 DBField
12 DBFieldSum
21 Chart
30 Connection
40 Band
100 Bookmark

See also
 GetNextObject

- easyReportPDF - 

7 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



GetFirstObj
Function explain

Name GetNextObj 

Parameters  Object Type as Integer, Object Name as WideString

Result  Result as WideString

From version  1.00

" Professional feature " 

Will return the next object found after the specified object name parameter in the report memory. This may be used to
retrieve the name of an object you don't known the exact name and then after knowing it's name change it's value. 

See the  GetFirstObject function to known the Object types and a small sample.

See also
 GetFirstObject

- easyReportPDF - 

8 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



SetPropObj
Function explain

Name GetPropObj 

Parameters  ObjectID as WideString , PropertyID as Integer , Value as 
WideString

Result  Result as WideString

From version  1.00

" Professional feature " 

The GetProperty gets a global parameter, the GetPropObj gets an object parameter defined in VisualEasyPDF. 

Syntax
Result = PDF .GetPropObj ObjectID as string, ProperyNumber as Integer

Example in ASP

<% 
' Create the component
set PDF = server.createobject("")
PDF.SetPropObj " form.listbox ", csPropObjCbxValues, " [ (AMX)(American Express)] [ (CBL)(Carte Blanche)] [
(DCL)(Diners Club)] [ (DSC)(Discover)] [ (ENR)(EnRoute)] (JCB)[ (MSC)(MasterCard)] [ (VIS)(Visa)] "

PDF.BinaryWrite
set pdf = nothing
%> 

See also
 SetProperty  GetProperty  SetPropObj  GetPropObj

- easyReportPDF - 

9 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



GetProperty
Function explain

Name GetProperty 

Parameters  PropertyID as Integer

Result  Value as String

From version  1.00

" Professional feature " 

Returns the specified property. The PropertyID is the parameter identifier that we want to known, it's an integer value
and we normally uses constants or defines to easily use names in one include file. 
Remember to add the include instruction if you want to use name identifiers, if not, then use directly the value for the
property you want to get. 

Properties are defined in constant groups; text, graphics, documents, information, report, internal, etc. We call  each
property with the constant name, you should find an information on each constant defined in this help file under the
constants help tree.

Info: When we started to design the library, we searched an easy way to change parameters for modifying the look of
the PDF document, without using thousands of variables that could change between different versions  without losing
compatibilities with old version. Some libraries uses properties that on version x a property is n wide length and for
example a string type, then it came version 2 and this version uses a double precision variable, making the old code
being incompatible.
This is why we decided to implement two powerful functions that gets and sets values that modifies and interacts with
the library. The value is always treated as a string, making the conversion inside the library and forgetting on
incompatible version from version 1 to x.

Syntax
var = PDF .GetProperty PropertyID as Integer

Example in ASP:

const csPropTextFont = 100
' Write with Helvetica Font
Actual_Font = PDF.GetProperty csPropTextFont
PDF.AddText " This font is " & Actual_Font

See also
 SetProperty  GetProperty  SetPropObj  GetPropObj

- easyReportPDF - 

10 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



SetPropObj
Function explain

Name SetPropObj 

Parameters  ObjectID as WideString , PropertyID as Integer , Value as 
WideString

Result  (none)

From version  1.00

" Professional feature " 

The SetProperty changes a global parameter, the SetPropObj changes an object parameter. 

Syntax
PDF .SetPropObj ObjectID as string, ProperyNumber as Integer , Value as string

Properties

See this link to read all properties that can be altered

Example in ASP

<% 
' Create the component
set PDF = server.createobject(" aspPDF.EasyPDF ")
' Adds a Scroll list and introduces the values
PDF.AddFormObj 320, 400, 420, 450, " form.listbox ", " test ", " Introduce the value combo value ", foScrollList
PDF.SetPropObj " form.listbox ", csPropObjCbxValues, " [ (AMX)(American Express)] [ (CBL)(Carte Blanche)] [
(DCL)(Diners Club)] [ (DSC)(Discover)] [ (ENR)(EnRoute)] (JCB)[ (MSC)(MasterCard)] [ (VIS)(Visa)] "
PDF.BinaryWrite
set pdf = nothing
%> 

See also
 GetProperty  SetPropety  GetPropObj  DrawVEP  LoadVEPFile

- easyReportPDF - 

11 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF

con_constants_description.htm
met_getproperty.htm
met_setproperty.htm
met_getpropobj.htm
met_DrawVEP.htm
met_LoadVEPFile.htm


Function explain

Name SetProperty 

Parameters  PropertyID as Integer , Value as WideString

Result  (none)

From version  1.00

Returns the specified property. The PropertyID is the parameter identifier that we want to change, it's an integer value
and we normally uses constants or defines to easily use names in one include file. 
Remember to add the include instruction if you want to use name identifiers, if not, then use directly the value for the
property you want to get. 

Properties are defined in constant groups; text, graphics, documents, information, report, internal, etc. We call  each
property with the constant name, you should find an information on each constant defined in this help file under the
constants help tree.

Info: When we started to design the library, we searched an easy way to change parameters for modifying the look of
the PDF document, without using thousands of variables that could change between different versions  without losing
compatibilities with old version. Some libraries uses properties that on version x a property is n wide length and for
example a string type, then it came version 2 and this version uses a double precision variable, making the old code
being incompatible.
This is why we decided to implement two powerful functions that gets and sets values that modifies and interacts with
the library. The value is always treated as a string, making the conversion inside the library and forgetting on
incompatible version from version 1 to x.

Syntax
PDF .SetProperty ProperyNumber as Integer , Value as variant

Example in ASP:

const csPropTextFont = 100
' Write with Helvetica Font
PDF.SetProperty csPropTextFont, " F5
"
PDF.AddText " Hello world "

Example in C:

define csPropTextFont = 100;
' Write with Helvetica Font 

main()
{
PDF.SetProperty (csPropTextFont, ' F5
');
PDF.AddText(' Hello world ');
}

Example in Delphi:

const csPropTextFont = 100;
' Write with Helvetica Font
PDF.SetProperty (csPropTextFont, ' F5
');
PDF.AddText(' Hello world ');

- easyReportPDF - 

12 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



See also
 SetProperty  GetProperty  SetPropObj  GetPropObj

- easyReportPDF - 

13 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



License
Function explain

Name License 

Parameters  FileName as String 

Result  Result as Boolean

From version  1.00

NOTE: Only for registered customers.

After purchasing the library you will receive a license file that should be used in conjunction with the library. What it
does the license is to check if the machine is allowed to run the library by checking the IP address or the Unique
identification.
You do not have to use the license method if you copy the license on the system32 path, the library will search on the
actual path and on the system32 path if it exists the license, then it will load it.

The license function is an alternative way to load the license from a different location of different license name, this
could be useful for multi host environments or because you don't have read permissions on the system32 path.

Call the license function after creating the library process.

Syntax
PDF .License LicenseFile as String

Example in ASP:

<% 
' Create the component
set PDF = server.createobject(" aspPDF.EasyPDF ")
' Loads the license from a different place 
PDF.License " C:\inetpub\wwwroot\licenses\easypdf.lic
"

' .... your code
%>

Example in Delphi:

var
   pdf : IEASYPDF;
begin
  // Create the COM object

PDF := CreateComObject(CLASS_EASYPDF ) as IEASYPDF
;

// Init the memory
PDF.Create();
// Load license
PDF.License( ' C:\inetpub\wwwroot\licenses\easypdf.lic ' ); 
// .... your code

end;

See also

- easyReportPDF - 

14 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



- easyReportPDF - 

15 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



 SiteLicense  Lic_Debug

- easyReportPDF - 

16 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



L oadFromFile

Function explain

Name LoadFromFile

Parameters  FileName as String 

Result  Result as Boolean

From version  1.00

Loads the VisualEasyPDF report to the memory, you need to always call this function before using any other
commands. If it's succeed then returns true.

If you need to download the report from a remote site, ( trough different internet connected servers ), then use the
LoadFromHTTP function, is slower than the LoadFromFile which will load the report locally, so try to avoid to use the
LoadFromHTTP function. 

See also
 LoadFromHTTP  Render

- easyReportPDF - 

17 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF

fun_loadfromhttp.htm


L oadFromFile

Function explain

Name LoadFromHTTP

Parameters  URL as String 

Result  Result as Boolean

From version  1.00

Loads the VisualEasyPDF report to the memory, you need to always call this function before using any other
commands. If it's succeed then returns true.

If you need to download the report from a remote site, ( trough different internet connected servers ), then use this
function, is slower than the LoadFromFile which will load the report locally, so try to avoid to use the LoadFromHTTP
function.

If you get a false return result, then check the error message which will contain the HTTP error code. 

See also
 LoadFromFile  Render

- easyReportPDF - 

18 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Print

Function explain

Name Print

Parameters  (none)

Result  FileName as String

From version  1.00

Prints the report to the default printer. Returns the temporary file name that has created.

NOTE:  This function should be never be used in ASP development, because then the server will print the PDF report
and not the customer browser.

Syntax
FileName as String = ERP .Show

Example in VB:

<% 
set PDF = server.createobject("")
' Your code
PDF.Save  Server.MapPath ("filename.pdf"
) 
%>

See also
 BinaryWrite  SaveVariant  Show  Print

- easyReportPDF - 

19 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Render

Function explain

Name Render

Parameters  Page as Integer

Result  (none)

From version  1.00

After loading the report into the memory and set all parameters to the connection, use the Render function to render the
report in memory. You wont see the report until you issue the Show or Print function, this function just renders the
VisualEasyPDF page you issue.

Setting page to 0 will draw all pages from the report.

You may call as many times the render function you need for drawing different reports with different parameters
values..

See also
 LoadFromFile  LoadFromHTTP

- easyReportPDF - 

20 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF

fun_loadfromhttp.htm


SaveVariant
Function explain

Name SaveVariant 

Parameters  (none)

Result  Result as OleVariant ( byte[] )

From version  1.00

This is the same function as the Save method, but instead to save it to disk it will return an array of bytes which you can
be redirected to the client or save it to disk. This is the preferred way to work on interned developments because you
don't have to establish securities permissions and you don't have to maintain PDF files on Disk.

NOTE FOR .NET DEVELOPERS: If you code in .NET you should add a Reference to your project, from the COM
window list browse for the aspEasyPDF library, then add it. It should create the Interop dll that  you will find it on your
project.
You can also create manually your project, create a bin directory and copy from the installation directory the 
Interop.aspPDF.dll to the bin folder of your project.

Syntax in .NET
Byte[] = ERP .SaveString
Example in ASP.NET using language C#:

<% @Page Language=" C# " %>
<% @Import Namespace=" System " %>
<% @Import Namespace=" System.Web " %>
<% @Import Namespace=" aspPDF " %>
<script language=" C# " runat=" server ">
private void Page_Load(Object sender, EventArgs e) {

aspPDF.EASYPDF pdf = new aspPDF.EASYPDF();
pdf.Create();
Response.Clear();
Response.ContentType=" application/pdf "; 
Response.AddHeader( " content-disposition "," attachment; filename=MyPDF.PDF "); 
Response.BinaryWrite( (byte[]) pdf.SaveVariant());

}
</script>

See also
 BinaryWrite  SaveVariant  Show  Print

- easyReportPDF - 

21 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Save
Function explain

Name Save 

Parameters  FileName as String 

Result  FileName as String

From version  1.00

Saves the report to the disk, if you left blank the parameter then it will create a temporary PDF file in the temp directory
and it will return the name of the file that has generated.

NOTE:  If you use ASP or ASP.NET development you should always check your write permissions to the IIS_users for
write permissions on the folder that you will use to save your document. If the IIS anonymous user doesn't have
sufficient privileges then it will fail to write to disk.

Syntax
ERP .Save FileName as String

Example in ASP:

<% 
set PDF = server.createobject("")
' Your code
PDF.Save  Server.MapPath ("filename.pdf"
) 
%>

See also
 BinaryWrite  SaveVariant  Show  Print

- easyReportPDF - 

22 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



SetDBConnection

Function explain

Name SetDBConnection

Parameters  Object Name as String,  Connection Syntax as String

Result  Result as Boolean

From version  1.00

" Only in Professional version " 

Changes the connection dynamically before rendering the report. This may be helpful to dynamically change the server
database connection or even the database type.

Programmers may also use this function for standard reports which you don't known which will be the final server
connection.

Syntax parameter may only use the parameter which is changed, you don't need to set all parameters again, just the
one that has been changed.

We have tried to use the MS notation for the connection string, each parameter should be separated with a semicolon
";" and blank spaces should be always set with the double quote ";

Connection parameters

Driver Sets the driver to be used for the connection, at this moment those are available and are all native, if you experience some
problems then you may use the ADO connection which will use the ADO driver from the database. Normally Native drivers are
faster than ADO.

ADO - Sets an ADO connection which enables you to connect to practically to all databases which provides a driver for ADO.
FireBird - Free Relation database which offers SQL-92 standard instruction sets. Runs in many platforms. Web page . 
InterBase - Borland® InterBase®, web page .
msSQL - The Microsoft SQL server. Web information page .
MySQL - The mySQL server from 3.12 to 5.x Web page.
Oracle - Oracle. Web page.
Sqlite - C library that implements a self-contained, embeddable, zero-configuration SQL database engine. Linux, Windows . 
Web page .
Sybase - Sybase databaser. Web page.

Host Specifies the host server. Can be introduced by IP address or by host name.

Port Port address of the server. Set to 0 or do not introduce any value to use the default port connection.

Database The database to be connected. Some databases can only use one database and this parameter may be ignore. For servers with
multi-databases you should use this parameter to specify which database to use.

User ID User ID for connection to the database. Use a valid user for the database authentication process-

Password Sets the password for the connection user. 

Properties Sets additional properties for the connection. At this moment this only works with the ADO connection

Syntax
ERP .SetDBConnection Object as String, Connection as String 

- easyReportPDF - 

23 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF

http://firebird.sourceforge.net
http://www.borland.com/interbase/
http://www.microsoft.com/sql/
http://www.mysql.com
http://www.oracle.com/
http://www.sqlite.org/
http://www.sqlite.org/
http://www.sybase.com/


- easyReportPDF - 

24 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



SetDBSQL

Function explain

Name SetDBSQL

Parameters  Object Name as String, SQL Syntax as String

Result  Result as Boolean

From version  1.00

" Only in Professional version " 

Changes the SQL connection dynamically before rendering the report. This is done to set complex values for the report
or change report field values.
To known which is the name of the connection, open VisualEasyPDF, load the report and see on the connection
window which is your object connection name.

Remember that parameter constants are defined with a double point (:) before the parameter name and should be
defined before using VisualEasyPDF.

You may also use the SetParameter property which is included in the Standard version to set the parameter to a given
value.

NOTE: This function does not check the SQL syntax, if wrong you will get an error message displaying where the error
is. For WEB development check the Error property to see which error is.

Syntax
ERP .SetDBSQL Object as String SQL as String 

- easyReportPDF - 

25 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



SetDBConnection

Function explain

Name SetDBConnection

Parameters  Name as String,  Value as String

Result  Result as Boolean

From version  1.00

Sets a new value for a given parameter object. Check with VisualEasyPDF which are the object parameters you have
defined in the report.

If it successes then it returns true otherwise it will be false.

- easyReportPDF - 

26 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Show

Function explain

Name Show

Parameters  (none)

Result  FileName as String

From version  1.00

Saves the report to a temporary PDF file and opens it. Returns the temporary file name that has created.

NOTE:  This function should be never be used in ASP development, because then the server will display the PDF
report and not the customer browser.

Syntax
FileName as String = ERP .Show

Example in VB:

<% 
set PDF = server.createobject("")
' Your code
PDF.Save  Server.MapPath ("filename.pdf"
) 
%>

See also
 BinaryWrite  SaveVariant  Show  Print

- easyReportPDF - 

27 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Acrobat_App

Property explain

Name Acrobat_App

Parameter type WideString

Read / Write  / 

Sets the acrobat binary program to see and print PDF documents. When starting the library it checks for the latest
version of acrobat reader and assigns it to this variable, you may use any other version or different viewer by overriding
this property.

The Show and Print functions uses this variable.

- easyReportPDF - 

28 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Debug
Property explain

Name Debug

Syntax in VB ERP .Debug = True /
False

Parameter type Boolean

Read / Write  / 

Sets the library in debug mode. This is very useful for debugging your application if you get errors and wish to see
what's happening. 

If you activate this option when you made any operation on your program it will displays what's going on into a file or
the screen. Default is set to False, so there is no debug information when running up.

To active the Debug to a file use the csPropIntDebugFile , by default it will output all information on the screen.

Note: Do not use the debug property in conjunction with ASP and BinaryWrite, it will output the information directly to
the PDF reader and it will fail with an error. If you want to use the Debug option then use the Save function.

Example in ASP

<%
 ERP.Debug = True

%>

- easyReportPDF - 

29 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF

../../aspPDF/chm_help/con_cspropintdebugfile.htm


LastError

Property explain

Name LastError

Parameter type WideString

Read / Write  / 

Gets the last error from the library. The Error is a string that contains the description in english of the error that was
issued by the last command executed.

To reset the error just assign it to an empty string.

- easyReportPDF - 

30 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Lic_ Debug
Property explain

Name Lic_Debug

Syntax in VB ERP .Lic_Debug = True /
False

Parameter type Boolean

Read / Write  / 

This properties is only for registered users and outputs debug information on how it loads and checks the license. This
is useful to check if there is a problem with the IP address of the machine and the licensed file or if the license is
corrupted. 

If it displays any problem, please send this debug information to support@mitdata.net to repair and send a new license
file.

Example in ASP

<%
dim ERP
' Debug the license routine on the PDF version
' This is done when you get problems on the license machine
set ERP = server.createobject
("ReportPDF.easyReportPDF")
ERP.DEBUG = True
ERP.LIC_DEBUG = True
' Loads the license file, change it if you use a different path
ERP.License("reportPDF.lic")
response.write "<br>Version Information:<br>" &
ERP.Version
set erp = nothing
%>

See also
 License  SiteLicense

- easyReportPDF - 

31 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF

mailto:support@mitdata.net


[[TOPIC HERE]]

- easyReportPDF - 

32 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



SiteLicense
Property explain

Name SiteLicense 

Parameter type String

Read / Write  / 

When you purchase the library you have two licensing methods, one is that you pay per server license ( one license for
one computer ) and the other you pay once and you can install it everywhere or distributed it with your application
without paying any royalties for that.

If you decide to purchase the SiteLicense option, then we can send you two different versions of the library, using the
license file or compiling the DLL just for you with your information encoded inside the library:

Using License file:
This is the default method that will use our eCommerce system to compose the license, what is means is that you will
have a license file encoded with the name of your company that must match on the source code by setting the
SiteLicense property. See this example, imagine that your company is called MITData and you just purchased a site
license this is what you should change on your code:

Example in ASP

<%
set ERP = server.createobject
("ReportPDF.easyReportPDF")
ERP.SiteLicense = " MITData "
' Loads the license file
ERP.License("easypdf.lic")
response.write "<br>Version Information:<br>" &
ERP.Version
set erp = nothing
%>

Notice that you must set the SiteLicense property after creating the library object and before calling the License
function.

The license wont check any IP address or Unique Identification of the machine, just if the name matches the license.

Using a compiled DLL:
This is useful if you don't want that the library does not check any license file, you must contact us to compile a special
version that will have encoded the company name inside the Library.

The bad part of this option is that if you want to upgrade the library to the latest version you must contact us, with the
first option you only download the latest version from the registered users site.

See also
 License  Lic_Debug

- easyReportPDF - 

33 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



- easyReportPDF - 

34 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



ShowProgress

Property explain

Name ShowProgress

Syntax in VB ERP . ShowProgress = True /
False

Parameter type Boolean

Read / Write  / 

Disable or enables a small progress window that appears when rendering the report.

By default is set to true, but if it detects that the library has been called from a WEB application, then it disables the
windows because displaying it on the server it may hang the library and you will need to restart the machine to start
again the IIS.

- easyReportPDF - 

35 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Version
Property explain

Name Version

Parameter type String

Read / Write  / 

Returns the version information of the library and the IP address from your network machine, this last information will be
needed when buying the library.

Please support us and register it for developing better and new programming libraries.

- easyReportPDF - 

36 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Web_app

Property explain

Name Web_App

Syntax in VB ERP . Web_App = True /
False

Parameter type Boolean

Read / Write  / 

Setting this property you are telling from where you are calling you application, if you set the Web_App to true, you will
disable all error pop up messages and some user dialog interaction ( like the parameters box ). If you don't set the
value properly then you may get unexpected results. So, if the application is always users unattended, like Web
applications do, set it always to True.

By default is set to False, but if it detects that the library has been called from a WEB application then it sets to True.

- easyReportPDF - 

37 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Constant Definition

ID 900

Name csPropERPParamName

Type String

GetPropObj Yes

GetPropObj Yes

Returns the parameter name of the parameter object.

- easyReportPDF - 

38 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Constant Definition

ID 901

Name csPropERPParamValue

Type String

GetPropObj Yes

GetPropObj Yes

Returns the parameter name of the parameter object.

- easyReportPDF - 

39 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Constant Definition

ID 902

Name csPropERPParamType

Type String

GetPropObj Yes

GetPropObj Yes

Returns the parameter type.

- easyReportPDF - 

40 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Constant Definition

ID 903

Name csPropERPParamAskUser

Type String

GetPropObj Yes

GetPropObj Yes

Sets the parameter to be used on the dialog parameter user to ask a value for it. Set to 1 to enable it or 0 to disable it.

- easyReportPDF - 

41 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Constant Definition

ID 970

Name csPropERPParamName

Type String

GetProperty Yes

GetProperty Yes

Enables you to activate or desactivate the dialog parameter that will display to the user to select a value. Use this
parameter in visual application, not in web development.

- easyReportPDF - 

42 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Pascal reference

Pascal syntax
easyReportPDF executes internal event scripts written in Pascal syntax. This provides fast and easy programming in the
reports.

Current Pascal syntax supports:

" begin .. end constructor
" procedure and function declarations
" if .. then .. else constructor
" for .. to .. do .. step constructor
" while .. do constructor
" repeat .. until constructor
" try .. except and try .. finally blocks
" case statements
" with statements
" as / is statements
" array constructors (x:=[ 1, 2, 3 ];)
" ^ , * , / , and , + , - , or , <> , >=, <= , = , > , < , div , mod , xor , shl , shr operators
" access to object properties and methods ( ObjectName.SubObject.Property )

Script structure
Script structure is made of two major blocks: a) procedure and function declarations and b) main block. Both are
optional, but at least one should be present in script. There is no need for main block to be inside begin..end. It could be
a single statement. Some examples:

SCRIPT 1:
procedure DoSomething;
begin
CallSomething;
end;
begin
CallSomethingElse;
end;
SCRIPT 2:
begin
CallSomethingElse;
end;
SCRIPT 3:
function MyFunction;
begin
result:='Ok!';
end;
SCRIPT 4:
CallSomethingElse;

Like in pascal, statements should be terminated by ";" character. Begin..end blocks are allowed to group statements.

Identifiers
Identifier names in script (variable names, function and procedure names, etc.) follow the most common rules in pascal :
should begin with a character (a..z or A..Z), or '_', and can be followed by alphanumeric chars or '_' char. Cannot contain
any other character os spaces.
Valid identifiers:

- easyReportPDF - 

43 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



VarName
_Some
V1A2
_____Some____
Invalid identifiers:
2Var
My Name
Some-more
This,is,not,valid

Assign statements
Just like in Pascal, assign statements (assign a value or expression result to a variable or object property) are built using
":=". Examples:

MyVar:=2;
Button.Caption:='This ' + 'is ok.';

Character strings
strings (sequence of characters) are declared in pascal using single quote (') character. Double quotes (") are not used.
You can also use #nn to declare a character inside a string. There is no need to use '+' operator to add a character to a
string. Some examples:

A:='This is a text';
Str:='Text '+'concat';
B:='String with CR and LF char at the end'#13#10;
C:='String with '#33#34' characters in the middle';

Comments
Comments can be inserted inside script. You can use // chars or (* *) or { } blocks. Using // char the comment will
finish at the end of line.

//This is a comment before ShowMessage
ShowMessage('Ok');
(* This is another comment *)
ShowMessage('More ok!');
{
And this is a comment
with two lines }
ShowMessage('End of okays');

Variables
There is no need to declare variable types in script. Thus, you declare variable just using var directive and its name.
There is no need to declare variables if scripter property OptionExplicit is set to false. In this case, variables are implicit
declared. If you want to have more control over the script, set OptionExplicit property to true. This will raise a compile
error if variable is used but not declared in script. Examples:

SCRIPT 1:

- easyReportPDF - 

44 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



procedure Msg;
var S;
begin
S:='Hello world!';
ShowMessage(S);
end;
SCRIPT 2:
var A;
begin
A:=0;
A:=A+1;
end;
SCRIPT 3:
var S;
S:='Hello World!'
ShowMessage(S);

Note that if script property OptionExplicit is set to false, then var declarations are not necessary in any of scripts above.

Indexes
Strings, arrays and array properties can be indexed using "[" and "]" chars. For example, if Str is a string variable, the
expression Str[3] returns the third character in the string denoted by Str, while Str[I + 1] returns the character
immediately after the one indexed by I. More examples:

MyChar:=MyStr[2];
MyStr[1]:='A';
MyArray[1,2]:=1530;
Lines.Strings[2]:='Some text';

Arrays
Script support array constructors and support to variant arrays. To construct an array, use "[" and "]" chars. You can
construct multi-index array nesting array constructors. You can then access arrays using indexes. If array is multi-index,
separate indexes using ",".
If variable is a variant array, script automatically support indexing in that variable. A variable is a variant array is it was
assigned using an array constructor, if it is a direct reference to a Delphi variable which is a variant array (see Delphi
integration later) or if it was created using VarArrayCreate procedure.
Arrays in script are 0-based index. Some examples:

NewArray := [ 2,4,6,8 ];
Num:=NewArray[1]; //Num receives "4"
MultiArray := [ ['green','red','blue'] , ['apple','orange','lemon'] ];
Str:=MultiArray[0,2]; //Str receives 'blue'
MultiArray[1,1]:='new orange';

If statements
There are two forms of if statement: if...then and the if...then...else. Like normal pascal, if the if expression is true, the
statement (or block) is executed. If there is else part and expression is false, statement (or block) after else is execute.
Examples:

- easyReportPDF - 

45 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



if J <> 0 then Result := I/J;
if J = 0 then Exit else Result := I/J;
if J <> 0 then
begin
Result := I/J;
Count := Count + 1;
end
else
Done := True;

While statements
A while statement is used to repeat a statement or a block, while a control condition (expression) is evaluated as true.
The control condition is evaluated before the statement. Hence, if the constrol condition is false at first iteration, the
statement sequence is never executed. The while statement executes its constituent statement (or block) repeatedly,
testing expression before each iteration. As long as expression returns True, execution continues. Examples:

while Data[I] <> X do I := I + 1;
while I > 0 do
begin
if Odd(I) then Z := Z * X;
I := I div 2;
X := Sqr(X);
end;
while not Eof(InputFile) do
begin
Readln(InputFile, Line);
Process(Line);
end;

Repeat statements
The syntax of a repeat statement is repeat statement1; ...; statementn; until expression where expression returns a
Boolean value. The repeat statement executes its sequence of constituent statements continually, testing expression after
each iteration. When expression returns True, the repeat statement terminates. The sequence is always executed at least
once because expression is not evaluated until after the first iteration. Examples:

repeat
K := I mod J;
I := J;
J := K;
until J = 0;
repeat
Write('Enter a value (0..9): ');
Readln(I);
until (I >= 0) and (I <= 9);

For statements
Scripter support for statements with the following syntax:
for counter := initialValue to finalValue [step X] do statement

- easyReportPDF - 

46 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



or:
for counter := initialValue downto finalValue [step X] do statement

For statement set counter to initialValue, repeats execution of statement (or block) and increment/decrement value of
counter optionally with step X until counter reachs finalValue. Examples:

SCRIPT 1:
for c:=1 to 10 do
a:=a+c;
SCRIPT 2:
for i:=a to b do
begin
j:=i^2;
sum:=sum+j;
end;

Case statements
Scripter support case statements with following syntax:

case selectorExpression of
caseexpr1: statement1;
...
caseexprn: statementn;
else
elsestatement;
end

if selectorExpression matches the result of one of caseexprn expressions, the respective statement (or block) will be
execute. Otherwise, elsestatement will be execute. Else part of case statement is optional. Different from Delphi, case
statement in script doesn't need to use only ordinal values. You can use expressions of any type in both selector
expression and case expression. Example:

case uppercase(Fruit) of
'lime': ShowMessage('green');
'orange': ShowMessage('orange');
'apple': ShowMessage('red');
else
ShowMessage('black');
end;

Function and procedure declaration
Declaration of functions and procedures are similar to Object Pascal in Delphi, with the difference you don't specify
variable types. Just like OP, to return function values, use implicited declared result variable. Parameters by reference
can also be used, with the restriction mentioned: no need to specify variable types. Some examples:

procedure HelloWord;
begin
ShowMessage('Hello world!');
end;
procedure UpcaseMessage(Msg);

- easyReportPDF - 

47 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



begin
ShowMessage(Uppercase(Msg));
end;
function TodayAsString;
begin
result:=DateToStr(Date);
end;
function Max(A,B);
begin
if A>B then
result:=A
else
result:=B;
end;
procedure SwapValues(var A, B);
Var Temp;
begin
Temp:=A;
A:=B;
B:=Temp;
end;

- easyReportPDF - 

48 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Events

easyReportPDF is event oriented object, this means that for any band, page, or DBField in report that is printed before or
after, will fire an event which the dessigned report may act in the user programmed way.

Report_OnStart

Before drawing the report it will fire this event script. There are no parameters set and does not return any value.

Details_OnPrintBefore

Before drawing the detail band it will fire this event script. There are no parameters set.

Note: You should always return true or false to that event. Set to True if you want to print the details or to false to not
print it.

[OBJECTNAME FIELD]_OnPrintBefore

Before drawing the object field it will fire this event script. There is one parameter which points to the contents of the
field

If you set a return value, then it will print the return value and not the contents of the field.

[OBJECTNAME FIELD]_OnPrintAfter

After drawing the object field it will fire this event script. There is one parameter which points to the printed value, not
the field value.

No return values.

[OBJECTNAME TEXT]_OnPrintBefore

Before drawing the object text it will fire this event script. There is one parameter which points to the contents of the
object text

If you set a return value, then it will print the return value and overrides the object text.

- easyReportPDF - 

49 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



- easyReportPDF - 

50 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Internal functions

easyReportPDF supports some internal functions in the script that may be the same that you may use in the library.

TDataSet =  DBDataSet   ( Connection_Name : string )

The DBDataSet function returns the TDataSet object class ( more information in the TDataSet class in the Global
variable help menu ) for the given connection name. If is not found then return nil.

TField =  DBField  ( Field_Name : string )

The DBField function returns a TField object class ( more information in the TField class in the Global variable help
menu ) for the given field name. If is not found then return nil.

You may specify a connection name if you have more than one connection and the field maybe defined in both
connection. To do that just put the name of the connection plus a dot separation and then the field name. (for example: 
DBField( 'connection4.customernr' ) )

string =  getProperty  ( Property_ID : integer )

Returns a property of the PDF document, to known which property to use see aspEasyPDF or easyReportPDF help
manual.

string =  getPropObj  ( ObjectName : string; Property_ID : integer )

Returns a property of an object of the PDF document, to known which property and get more information on this
function see aspEasyPDF or easyReportPDF help manual.

setProperty  ( Property_ID : integer; Value : string )

Sets a property of the PDF document, to known which property to use see aspEasyPDF or easyReportPDF help
manual.

setPropObj  ( ObjectName : string; Property_ID : integer; Value : string )

Sets a property of an object for the PDF document, to known which property and get more information on this function
see aspEasyPDF or easyReportPDF help manual.

- easyReportPDF - 

51 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Global variables

PosXCursor

Gets or set the position of the X Cursor. 
Note: Using wrong this variable may render incorrectly the report.

PosYCursor

Gets or set the position of the Y Cursor. 
Note: Using wrong this variable may render incorrectly the report.

PageNumber

Gets the actual page number.

PageCount

Gets the actual page count.
Note: Retrieves the actual page count, which may be not the final number.

Version

Returns the actual version of the library which uses to render the report.

NVersion

Returns the actual version number of the library which uses to render the report.
Note: Use this variable to use compatible functions on the script or request before rendering the report to avoid old
version errors.

TDataSet Class

TDataSet is the ancestor class for TTable, TQuery, and TStoredProc ( Delphi classes ). As such, most properties,
methods, and events that these classes use are actually defined by TDataSet. Because so many characteristics of the

- easyReportPDF - 

52 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



derived classes come from TDataSet, I'll list the primary properties, methods, and events of TDataSet here, and later I'll
list the properties, methods, and events particular to each derived class.

Table 16.1 lists the most commonly used properties of the TDataSet class, Table 16.2 lists the primary methods.

TABLE 16.1. PRIMARY TDataSet PROPERTIES.

Property Description

Active Opens the dataset when set to True and closes it when set to False.

AutoCalcFields Determines when calculated fields are calculated.

Bof Returns True if the cursor is on the first record in the dataset and False if it isn't.

CachedUpdates When True, updates are held in a cache on the client machine until an entire transaction is complete.
When False, all changes to the database are made on a record-by-record basis.

CanModify Determines whether the user can edit the data in the dataset.

DataSource The DataSource component associated with this dataset.

DatabaseName The name of the database that is currently being used.

Eof Returns True if the cursor is at the end of the file and False if it isn't.

FieldCount The number of fields in the dataset. Because a dataset might be dynamic (the results of a query, for
example), the number of fields can vary from one dataset request to the next.

Fields An array of TFields objects that contains information about the fields in the dataset.

FieldValues Returns the value of the specified field for the current record. The value is represented as a Variant.

Filter An expression that determines which records a dataset contains.

Filtered When True, the dataset is filtered based on either the Filter property or the OnFilterRecord event. When
False, the entire dataset is returned.

FilterOptions Determines how filters are applied.

Found Indicates whether a find operation is successful.

Handle A BDE cursor handle to the dataset. This is used only when making direct calls to the BDE.

Modified Indicates whether the current record has been modified.

RecNo The current record number in the dataset.

RecordCount Returns the number of records in the dataset.

State Returns the current state of the dataset (dsEdit, dsBrowse, dsInsert, and so on).

UpdateObject Specifies the TUpdateObject component to use for cached updates.

UpdatesPending When True, the cached update buffer contains edits not yet applied to the dataset.

TABLE 16.2. PRIMARY TDataSet METHODS.

Method Description

Append Creates an empty record and adds it to the end of the dataset.

AppendRecord Appends a record to the end of the dataset with the given field data and posts the edit.

ApplyUpdates Instructs the database to apply any pending cached updates. Updates are not actually written until the
CommitUpdates method is called.

Cancel Cancels any edits to the current record if the edits have not yet been posted.

CancelUpdates Cancels any pending cached updates.

ClearFields Clears the contents of all fields in the current record.

CommitUpdates Instructs the database to apply updates and clear the cached updates buffer.

Close Closes the dataset.

Delete Deletes the current record.

DisableControls Disables input for all data controls associated with the dataset.

Edit Enables editing of the current record.

- easyReportPDF - 

53 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



EnableControls Enables input for all data controls associated with the dataset.

FetchAll Gets all records from the cursor to the end of the dataset and stores them locally.

FieldByName Returns the TField pointer for a field name.

FindFirst Finds the first record that matches the current filter criteria.

FindNext Finds the next record that matches the current filter criteria.

FindLast Finds the last record that matches the current filter criteria.

FindPrior Finds the previous record that matches the current filter criteria.

First Moves the cursor to the first record in the dataset.

FreeBookmark Erases a bookmark set previously with GetBookmark and frees the memory allocated for the bookmark.

GetBookmark Sets a bookmark at the current record.

GetFieldNames Retrieves a list of the field names in the dataset.

GotoBookmark Places the cursor at the record indicated by the specified bookmark.

Insert Inserts a record and puts the dataset in edit mode.

InsertRecord Inserts a record in the dataset with the given field data and posts the edit.

Last Positions the cursor on the last record in the dataset.

Locate Searches the dataset for a particular record.

Lookup Locates a record by the fastest possible means and returns the data contained in the record.

MoveBy Moves the cursor by the specified number of rows.

Next Moves the cursor to the next record.

Open Opens the dataset.

Post Writes the edited record data to the database or to the cached update buffer.

Prior Moves the cursor to the previous record.

Refresh Updates the data in the dataset from the database.

RevertRecord When cached updates are used, this method discards changes previously made to the record but not yet
written to the database.

SetFields Sets the values for all fields in a record.

UpdateStatus Returns the current update status when cached updates are enabled.

TField Class

The TField class represents a field (column) in a database. Through the TField class, you can set a field's attributes.
These attributes include the data type (string, integer, float, and so on), the size of the field, the index, whether the field
is a calculated field, whether it is required, and so on. You can also access or set a field's value through properties such
as AsString, AsVariant, and AsInteger.

Accessing Fields

Before you can get or set the field value, you need some way of locating a field. There are at least three ways to do
this:

• By its pointer name 

- easyReportPDF - 

54 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



• By the Fields property of TDataSet

• By the FieldByName method of TDataSet 

Accessing a field by its pointer name is probably the least used method. It works only if you have previously added
fields to your project using the Fields Editor. When you add fields via the Fields Editor, Delphi creates a pointer for each
field by combining the table name with the field name. If you have a table called Table1 and a string field called
FirstName, Delphi would create a TStringField pointer called Table1FirstName. You could use this pointer to access a
field:

Table1FirstName.Value := `Per';

The problem with this approach is that you don't always need to add fields using the Fields Editor.

The Fields property offers another way of accessing a field--by position. If you know that the LastName field is the first
field in the table, you can use something like this:

Edit1.Text := Table1.Fields[0].Value;

The problem with this approach, of course, is that you have to know the exact order of fields.

Of the three ways of accessing fields, the most commonly used and reliable is the FieldByName method. Using
FieldByName, you have to know only the name of the field to access the field:

Table1.FieldByName(`LastName').AsString := Edit1.Text;

FieldByName returns a TField pointer. To make it more understandable, let me break down the preceding line of code:

var Field : TField; begin Field := Table1.FieldByName(`LastName'); Field.AsString := Edit1.Text; end; In most cases,
FieldByName is the way to go. Oh, you might be wondering which record is modified when you execute the preceding
code. All these techniques retrieve the field from the current record.

Retrieving and Setting Field Values

After you obtain a pointer to a particular field, you can change its value by using the Value property or any of the As
properties (by As properties I mean AsString, AsInteger, AsDateTime, AsBoolean, and so on). These properties
perform conversions from one data type to another. Naturally, you can't always be assured that a conversion can be
made. For example, if you try to convert a string field containing Smith to an integer, an exception will be thrown.

Setting a field's value is simple when you know the secret of FieldByName:

Table1.Edit; Table1.FieldByName(`LastName').AsString := Edit1.Text; Table1.Post;

First, the Edit method is called to put the table in edit mode. If you fail to call Edit, you will get an exception when you try
to modify a field's value. After the table is put in edit mode, the field's value is set. In this case I used AsString instead of
the Value property. For a string field, it's the same thing in either case. Finally, the Post method is called to post the edit
to the database (or the update cache if CachedUpdates is on). That's all there is to it. Retrieving a field's value is just as
easy:

- easyReportPDF - 

55 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



var AcctNo : Integer; begin AcctNo := Table1.FieldByName(`ACCT_NBR').Value; { More code here. } end;

- easyReportPDF - 

56 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Samples

Example from the erp_orders tutorial:

• We define a total global variable which is a double type to hold the total price
• The function Report_OnStart is called when the report starts to render
• Before printing the text40 object it fires the text40_OnPrintBefore function, this calculates the discount price if it

has and add the value to the total global value.
• See that the DBField function retrieves the actual value
• The text51_OnPrintBefore formats the total value to a monetory decimal display 
• The text54_OnPrintBefore sets the version of the library and prints it on the report

{ Global variables
}
var
  total : double;
{ This is called just when the report start to render, before openning connection.
}
function Report_OnStart
begin
  total := 0;
end;
{ Calculate each line price with it's discount and add it to the total
}
function text40_OnPrintBefore
var
  price : double;
begin
  price := DBField(' UnitPrice ').asFloat * DBField(' Quantity ').asFloat;
if DBField('Discount').asFloat <> 0 then
begin

   price := price - ( ( price * DBField(' Discount ').asFloat ) / 100 );
end;

  total := total + price;
  Result := Format( ' %.2n $ ', [price] );
end;
{ Before printing the total format it
}
function text51_OnPrintBefore
begin
  // Degug
  /// ShowMessage ( total );
  Result := Format( ' %.2n $ ', [total] );
end;
function text54_OnPrintBefore
begin
  Result := ' Report generated with ' + Version + ' version in real-time ';
end;

Example from the erp_invoices_month:

- easyReportPDF - 

57 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



• This scripts shows you how to manipulate object property to make the report render dinamically.
• The function is called for each detail band print
• If the ExtendPrice is grater than 300 US dollars, then changes the Font to F2 ( which is bold ) and sets the color

to blue
• if the price is lower than 300 dollars then restablish the font to F1 and the color to black
• Sets to true the result to say to the library to print the band.

{ This function is called before printing each record
}
function Details_OnPrintBefore
begin
  // Check the ExtendedPrice field if it's greater than 300 US$
if DBField(' ExtendedPrice ').asFloat > 300 then
begin

    // Change Font and color text of the field11 object
SetPropObj(' field11 ', 100, ' F2 ');
SetPropObj(' field11 ', 103, '# 0000FF ');

  end
  else
  begin
    // Restore Font and color text of the field11 object

SetPropObj(' field11 ', 100, ' F1 ');
SetPropObj(' field11 ', 103, '#000000');

  end;
  // Render the record
Result := True;

end;

- easyReportPDF - 

58 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



Example using sample invoice :

<%
' #$#Author#$#
' #$#Date#$#
' #$#VEPVER#$#
Response.Buffer = TRUE
Response.ContentType = " application/pdf "
%>
<% 
' Create the component
set ERP = server.createobject(" ReportPDF.easyReportPDF ")
' Loads the VEP file 
ERP. WEB_APP = True
ERP. LoadFromFile( Server.MapPath(" erp_invoices_month.vep
") )
ERP. SetParameter " YearNum ", 1997
' Render all pages from the VisualEasyPDF report
ERP. Render 0
ERP. BinaryWrite
'ERP.Save Server.MapPath("erp_invoice.pdf")
set ERP = Nothing
%>

Example using sample invoice but in Professional version :

<%
' #$#Author#$#
' #$#Date#$#
' #$#VEPVER#$#
Response.Buffer = TRUE
Response.ContentType = " application/pdf "
%>
<% 
' Create the component
set ERP = server.createobject(" ReportPDF.easyReportPDF ")
' Loads the VEP file 
ERP. WEB_APP = True
ERP. LoadFromFile( Server.MapPath(" erp_invoices_month.vep ") )
' Set compression to reduce the PDF report size ( PRO feature only )
ERP. SetProperty 507, 3
' Set Parameter year
ERP. SetParameter " YearNum ", 1997

' Change host from connection4 ( PRO feature only )
ERP. SetDBConnection " connection4 ", " host=127.0.0.1 "

' Render all pages from the VisualEasyPDF report
ERP. Render 0
ERP. BinaryWrite
'ERP.Save Server.MapPath("erp_invoice.pdf")

- easyReportPDF - 

59 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



set ERP = Nothing
%>

- easyReportPDF - 

60 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



[[TOPIC HERE]]

- easyReportPDF - 

61 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF



[[TOPIC HERE]]

- easyReportPDF - 

62 / 62

Generated with aspEasyPDF library using demo sample CHM2PDF


	Information about easyReportPDF
	easyReportPDF
	Standard vs Professional
	Release History

	Functions and procedures
	Clear
	BinaryWrite
	getFirstObject
	getNextObject
	getPropObj
	getProperty
	setPropObj
	setProperty
	License
	LoadFromFile
	LoadFromHTTP
	Print
	Render
	SaveVariant
	Save
	SetDBConnection
	SetDBSQL
	SetParameter
	Show

	Properties
	Acrobat_App
	Debug
	LastError
	Lic_Debug
	NVersion
	SiteLicense
	ShowProgress
	Version
	Web_app

	Constants - Reports
	csPropERPParamName
	csPropERPParamValue
	csPropERPParamType
	csPropERPParamAskUser
	csPropERPAskUserParam

	Script reference
	Pascal reference
	Events supported
	Internal Functions
	Global variables
	Samples

	Reports from ASP
	Reports from ASP

	Reports from .NET
	Reports from .NET

	Report from other Apps
	Report from other App


